Stochastic Monotonicity and Slepian-type Inequalities for Innnitely Divisible and Stable Random Vectors

نویسندگان

  • Gennady Samorodnitsky
  • Murad S. Taqqu
چکیده

We study the relation between stochastic domination of an innnitely divisible random vector X by another innnitely divisible random vector Y and their corresponding L evy measures. The results are used to derive a Slepian-type inequality for a general class of symmetric innnitely divisible random vectors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimension free and infinite variance tail estimates on Poisson space

Concentration inequalities are obtained on Poisson space, for random functionals with finite or infinite variance. In particular, dimension free tail estimates and exponential integrability results are given for the Euclidean norm of vectors of independent functionals. In the finite variance case these results are applied to infinitely divisible random variables such as quadratic Wiener functio...

متن کامل

Remarks on Gaussian Noise Stability, Brascamp-Lieb and Slepian Inequalities

E. Mossel and J. Neeman recently provided a heat flow monotonicity proof of Borell’s noise stability theorem. In this note, we develop the argument to include in a common framework noise stability, Brascamp-Lieb inequalities (including hypercontractivity), and even a weak form of Slepian inequalities. The scheme applies furthermore to families of measures with are more log-concave than the Gaus...

متن کامل

Comparison inequalities on Wiener space

We de ne a covariance-type operator on Wiener space: for F and G two random variables in the Gross-Sobolev space D of random variables with a square-integrable Malliavin derivative, we let ΓF,G:= ⟨ DF,−DL−1G ⟩ , where D is the Malliavin derivative operator and L−1 is the pseudo-inverse of the generator of the Ornstein-Uhlenbeck semigroup. We use Γ to extend the notion of covariance and canonica...

متن کامل

[hal-00832589, v1] Comparison inequalities on Wiener space

We define a covariance-type operator on Wiener space: for F and G two random variables in the Gross-Sobolev space D of random variables with a square-integrable Malliavin derivative, we let ΓF,G:= 〈 DF,−DL−1G 〉 where D is the Malliavin derivative operator and L−1 is the pseudo-inverse of the generator of the Ornstein-Uhlenbeck semigroup. We use Γ to extend the notion of covariance and canonical...

متن کامل

Concentration for Infinitely Divisible Vectors with Independent Components

For various classes of Lipschitz functions we provide dimension free concentration inequalities for infinitely divisible random vectors with independent components and finite exponential moments. The purpose of this note is to further visit the concentration phenomenon for infinitely divisible vectors with independent components in an attempt to obtain dimension free concentration. Let X ∼ ID(γ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994